[Paper review 37]

Adversarial Autoencoders

(Hensman, et al., 2013)

[Contents]

- 1. Abstract
- 2. Introduction
 - 1. GAN
- 3. Adversarial Autoencoders
 - 1. Relationship to VAE
 - 2. Relation to GANs and GMMNs
- 4. Supervised AAE
- 5. Semi-supervised AAE
- 6. Unsupervised Clustering with AAE
- 7. Dimensionality Reduction with AAE
- 8. Conclusion

1. Abstract

propose AAE (Adversarial Auto Encoder)

- probabilistic autoencoder
- uses GAN to perform VI

2. Introduction

building scalable generative models to capture rich distributions

• ex) RBM, DBN, DBM : trained by MCMC

(compute gradient of log-likelihood, which becomes more imprecise as training oes on)

(:: Markov Chains are unable to mix between modes fast enough)

• recently : trained via **back-propagation**

1) VAE (2014), importance weighted autoencoders (2015)

• use **recognition network** to predict posterior over latent variable

2) GAN (2014)

• use adversarial training procedure

3) GMMN (2015)

- Generative Moment Matching Networks
- use **momennt matching cost function** to learn the data distribution

This paper : propose AAE that can turn autoencoder into generative model!

Autoencoder is trained with dual objectives

- 1) traditional reconstruction error criterion
- 2) adversarial training criterion

(matches the aggregated **posterior distn** of latent representation to an arbitrary **prior distn**)

2-1. GAN

- min-max adversarial game with generative model (G) and discriminative model (D)
- objective function

 $\min_G \max_D \operatorname{E}_{\operatorname{x} \sim p_{\operatorname{data}}} [\log D(\operatorname{x})] + \operatorname{E}_{\operatorname{z} \sim p(\operatorname{\mathbf{z}})} [\log(1 - D(G(\operatorname{\mathbf{z}}))].$

- using alternating SGD in 2 stages
 - step 1) train D
 - step 2) train G

3. Adversarial Autoencoders

notation

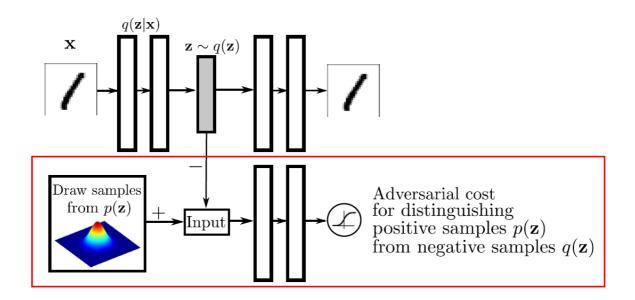
- x:input
- z : latent code vector
- $p(\mathbf{z})$: prior distn
- $q(\mathbf{z} \mid \mathbf{x})$: encoding distn
- $p(\mathbf{x} \mid \mathbf{z})$: decoding distn
- $p(\mathbf{x})$: model distribution

encoding function defines an aggregated posterior of $q(\mathbf{z})$ as below :

$$q(\mathbf{z}) = \int_{\mathbf{x}} q(\mathbf{z} \mid \mathbf{x}) p_d(\mathbf{x}) d\mathbf{x}.$$

AAE = AE+ "Regularization"

(by matching the aggregated posterior $q(\mathbf{z})$ to an arbitrary prior p(z))



Both (1) adversarial network and (2) autoencoder are trained JOINTLY with 2 phases.

- phase 1) reconstruction phase
 - autoencoder updates encoder & decoder to minimize reconstruction error
- phase 2) regularization phase
 - adversarial network
 - first updates *D*
 - next updates G

Several possible choices of encoder $q(\mathbf{z} \mid \mathbf{x})$:

- 1) Deterministic
 - just same as standard AE
 - \circ stochasticity is only from $q(\mathbf{z})$ (data distribution)
- 2) Gaussian posterior
 - $z_i \sim \mathcal{N}(\mu_i(\mathbf{x}), \sigma_i(\mathbf{x})).$
 - use reparam-trick
- 3) Universal approximator posterior
 - assume $q(\mathbf{z} \mid \mathbf{x}, \eta) = \delta(\mathbf{z} f(\mathbf{x}, \eta))$
 - o then,
 - posterior : $q(\mathbf{z} \mid \mathbf{x}) = \int_{\eta} q(\mathbf{z} \mid \mathbf{x}, \eta) p_{\eta}(\eta) d\eta$
 - aggregated posterior : $q(\mathbf{z}) = \int_{\mathbf{X}} \int_{\eta} q(\mathbf{z} \mid \mathbf{x}, \eta) p_d(\mathbf{x}) p_{\eta}(\eta) d\eta d\mathbf{x}$
 - stochasticity is from
 - 1) $q(\mathbf{z})$ (data distribution)
 - 2) random noise input η at input of the encoder

Summary

- 1) : may produce $q(\mathbf{z})$ that is not very smooth
- 2) and 3) : additional sources of stochasticity, which could help regularization by smoothing out $q(\mathbf{z})$

3-1. Relationship to VAE

VAE summary

minimize the below upperbound on the NLL

$$\begin{split} E_{\mathbf{x} \sim p_d(\mathbf{x})}[-\log p(\mathbf{x})] &< E_{\mathbf{x}} \left[\mathbb{E}_{q(\mathbf{z}|\mathbf{x})}[-\log(p(\mathbf{x} \mid \mathbf{z})]] + E_{\mathbf{x}}[\mathrm{KL}(q(\mathbf{z} \mid \mathbf{x}) || p(\mathbf{z}))] \\ &= E_{\mathbf{x}} \left[\mathbb{E}_{q(\mathbf{z}|\mathbf{x})}[-\log p(\mathbf{x} \mid \mathbf{z})] \right] - E_{\mathbf{x}}[H(q(\mathbf{z} \mid \mathbf{x}))] + E_{q(\mathbf{z})}[-\log p(\mathbf{z})] \\ &= E_{\mathbf{x}} \left[\mathbb{E}_{q(\mathbf{z}|\mathbf{x})}[-\log p(\mathbf{x} \mid \mathbf{z})] \right] - E_{\mathbf{x}} \left[\sum_{i} \log \sigma_i(\mathbf{x}) \right) \right] + E_{q(\mathbf{z})}[-\log p(\mathbf{z})] + \text{const} \\ &= \text{Reconstruction} - \text{Entropy} + \text{CrossEntropy}(q(\mathbf{z}), p(\mathbf{z})) \end{split}$$

- where $q(\mathbf{z}) = \int_{\mathbf{X}} \int_{\eta} q(\mathbf{z} \mid \mathbf{x}, \eta) p_d(\mathbf{x}) p_{\eta}(\eta) d\eta d\mathbf{x}.$
- $q(\mathbf{z} \mid \mathbf{x})$: Gaussian
- $p(\mathbf{z})$: arbitrary distributon

Three error term

- 1) reconstruction
- 2) entropy : encourgages large variances for the posterior
- 3) cross entropy : cross entropy between $q(\mathbf{z})$ and $p(\mathbf{z})$

AAE vs VAE

- in AAE, replace second two terms with **an adversarial training procedure** that encourages $q(\mathbf{z})$ to match the whole distribution of $p(\mathbf{z})$
- in order to backpropagate
 - (VAE) need to have access to "exact functional form" of prior
 - (AAE) only need to be able to sample from prior
 - ightarrow AAE can impose complex distn without accessing explicit functional form of distn

3-2. Relation to GANs and GMMNs

GAN vs AAE

- (GAN) impose data distribution at pixel level on the output layer of NN
- (AAE) training to capture the data distribution & much simpler distn is imposed in much lower dimension
 - ightarrow better test-likelihood

GMMN vs AAE

• (GMMN) use maximum mean discrepency (minimizing the distance between all moments of model & data distn)

can be combined with pre-trained droupout auto encoders GMMN+AE first trains standard dropout AE & then fits distribution

- (AAE) adversarial training procedure acts as regularizer
 - ightarrow better test-likelihood

3-3. Incorporating Label Information in the Adversarial Regularization

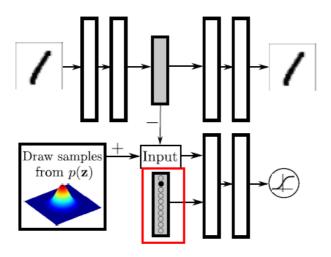
When the data is labeled, use the information!

• leverage partial (or complete) label info to REGULARIZE the latent representation

Semi-supervised approach

• add one-hot vector, which acts as switch that selects correspoding decision boundary of discriminative network, given the class label

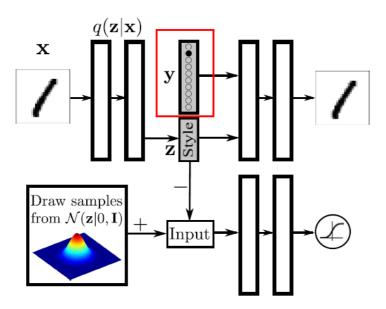
(extra class : for UNKNOWN class use full mixture of Gaussian)



4. Supervised AAE

Generative models have become most popular approaches for **semi-supervised learning**! In this section, deal with **"fully supervised"** case

Alter network architecture, to provide **one-hot vector encoding** of the label **to the decoder** (force the network to retain all information independent of the label in z)



5. Semi-Supervised AAE

In this section, deal with "semi-supervised" case

Assumption : data is generated by

- "latent class variable \mathbf{y} " (which comes from Categorical distn)
- "continuous latent variable ${f z}$ " (which comes from Gaussian distn)

 $p(\mathbf{y}) = \operatorname{Cat}(\mathbf{y}) \quad p(\mathbf{z}) = \mathcal{N}(\mathbf{z} \mid 0, \mathbf{I}).$

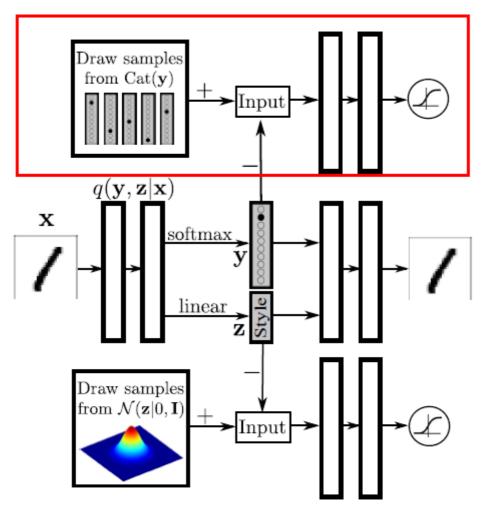
AAE predicts both \mathbf{y} and \mathbf{z} , using encoder $q(\mathbf{z}, \mathbf{y} \mid \mathbf{x})$

Then, decoder uses both (1) class label y (as a one-hot vector) and (2) continuous hidden code z to reconstruct image

There are 2 separate adversarial networks

- first network)
 - impose Categorical distn on the label representation
 - $\circ~$ ensures that $\mathbf y$ does not carry any style info
- second network)
 - impose Gaussian distn on the style representation
 - ensures that **z** is a continuous Gaussian variable
- both networks are trained jointly with SGD, in 3 phases
 - phase 1) reconstruction
 - AE updates encoder and decoder to minimize reconstruction error
 - phase 2) regularization
 - each of adversarial networks updates (1) D and (2) G
 - phase 3) semi-supervised classification phase
 - (if phase 3 does not exist, it is UNSUPERVISED task)

• AE updates $q(\mathbf{y} \mid \mathbf{x})$ to minimize cross-entropy



6. Unsupervised Clustering with AAE

In this section, deal with "unsupervised" case

difference with "semi-supervised" case

- (1) no phase 3) in above
- (2) inference network $q(\mathbf{y} \mid \mathbf{x})$ predicts one-hot vector, whose dimension is the number of categories which we specify

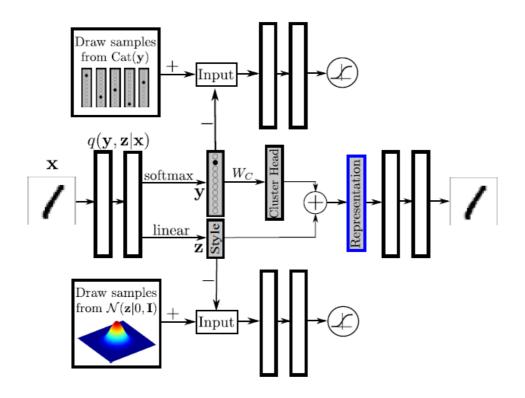
7. Dimensionality Reduction with AAE

visualization of high-dimensional data

• ex) t-SNE

(drawback : do not have a parametric encoder to encode new data point)

By adding n dim distributed representation of the cluster head, with n dim style representation



8. Conclusion

propose to use GAN framework as VI algorithm

(for both discrete & continuous latent variables, in probabilstic $\ensuremath{\mathsf{AE}}$)

• AAE = generative autoencoder